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DYRK1A-Dosage Imbalance Perturbs NRSF/REST Levels,
Deregulating Pluripotency and Embryonic Stem Cell Fate
in Down Syndrome

Claudia Canzonetta,1,9 Claire Mulligan,1,9 Samuel Deutsch,2 Sandra Ruf,3 Aideen O’Doherty,3,4

Robert Lyle,2 Christelle Borel,2 Nathalie Lin-Marq,2 Frederic Delom,1 Jürgen Groet,1 Felix Schnappauf,1

Serena De Vita,1 Sharon Averill,1 John V. Priestley,1 Joanne E. Martin,1 Janet Shipley,5 Gareth Denyer,6

Charles J. Epstein,7 Cristina Fillat,8 Xavier Estivill,8 Victor L.J. Tybulewicz,3 Elizabeth M.C. Fisher,4

Stylianos E. Antonarakis,2 and Dean Nizetic1,*

Down syndrome (DS) is the most common cause of mental retardation. Many neural phenotypes are shared between DS individuals and

DS mouse models; however, the common underlying molecular pathogenetic mechanisms remain unclear. Using a transchromosomic

model of DS, we show that a 30%–60% reduced expression of Nrsf/Rest (a key regulator of pluripotency and neuronal differentiation) is

an alteration that persists in trisomy 21 from undifferentiated embryonic stem (ES) cells to adult brain and is reproducible across several

DS models. Using partially trisomic ES cells, we map this effect to a three-gene segment of HSA21, containing DYRK1A. We indepen-

dently identify the same locus as the most significant eQTL controlling RESTexpression in the human genome. We show that specifically

silencing the third copy of DYRK1A rescues Rest levels, and we demonstrate altered Rest expression in response to inhibition of DYRK1A

expression or kinase activity, and in a transgenic Dyrk1A mouse. We reveal that undifferentiated trisomy 21 ES cells show DYRK1A-dose-

sensitive reductions in levels of some pluripotency regulators, causing premature expression of transcription factors driving early endo-

dermal and mesodermal differentiation, partially overlapping recently reported downstream effects of Restþ/�. They produce embryoid

bodies with elevated levels of the primitive endoderm progenitor marker Gata4 and a strongly reduced neuroectodermal progenitor com-

partment. Our results suggest that DYRK1A-mediated deregulation of REST is a very early pathological consequence of trisomy 21 with

potential to disturb the development of all embryonic lineages, warranting closer research into its contribution to DS pathology and new

rationales for therapeutic approaches.
Introduction

Down syndrome (DS [MIM 190685]) is a complex condi-

tion characterized by many phenotypic features, including

mental retardation, smaller brain size, reduced numbers of

neurons, reduced dendritic spine density and plasticity,

and early-Alzheimer’s-disease-like neurodegeneration.1,2

Mouse models for DS also display behavioral and cognitive

defects, synaptic plasticity defects and long-term potentia-

tion (LTP) deficit in the hippocampus, and reduced hippo-

campal and cerebellar neuron numbers.3–8 However,

despite these similarities, causative mechanisms common

to human and mouse DS systems remain to be elucidated.

Cultured fetal DS brain cell-derived neurospheres were

found to have decreased transcript levels of neuron-restric-

tive silencer factor (NRSF or REST [MIM 600571]) and

downstream targets such as SCG109[MIM 600621]. REST

modulates expression of genes encoding fundamental

neuronal functions including ion channels, synaptic pro-

teins, and neurotransmitter receptors.10–15 It is essential

both for the repression of these genes in non-neuronal
tissues10 and for the orchestrated activation of transcrip-

tion of these genes during neuronal differentiation, acting

as a silencer or as a transcription activator.12–14,16–18 Coor-

dinated activation of transcription of REST targets is both

necessary and sufficient for the transition from pluripotent

embryonic stem (ES) cells to neural progenitor cells

(NPCs)14 and onward to mature neurons,13,14 and the

REST pathway has been implicated in an inherited form

of mental retardation.19 Using a transchromosomic mouse

model of DS, we show here that a reduced expression of

Rest is an alteration that persists from undifferentiated ES

cells to the adult brain and is reproducible across several

DS models. We map the region capable of affecting Rest

levels in both mouse and human cells to the DYRK1A

[MIM 600855] locus and demonstrate the sensitivity of

Rest levels to the dose and kinase activity of DYRK1A. Re-

cently, Rest þ/� cells were found to have reduced levels

of key pluripotency regulators (Oct4 [MIM 164177], Nanog

[MIM 607937] and Sox2 [MIM 184429]), shedding new

light on the function of Rest in the regulation of ES cell

pluripotency and self-renewal.20 We demonstrate that
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trisomy 21 ES cells share certain aspects of the aberrant

control of pluripotency and early differentiation reported

in Rest þ/� cells,20 suggesting that DYRK1A-mediated

deregulation of REST could be an important potential

contributor to a variety of DS phenotypes.

Material and Methods

Material
All general reagents and tissue-culture media were from Sigma

(Dorset, UK) unless otherwise stated, and all primers were supplied

by Invitrogen (Paisley, UK). Transchromosomic ES cells 47-1, 40-2,

and 46-1 were derived from D3 ES cells by the introduction of all

or parts of HSA21 via microcell-mediated chromosome transfer.21

Mapping data for 40-2 and 46-1 have been previously published,21

and they were verified and refined to the single-gene resolution in

the current study (data available upon request). Antibodies were as

follows: anti-REST from Upstate, anti-GAPDH from Invitrogen

(ZYMED laboratories), and anti-PTEN from Abcam. Anti-b-actin,

anti-calnexin, and anti-b tubulin isotype III antibodies were

from Sigma. Sequences of primers and probes used for quantitative

RT-PCR and linkage analysis are available in Table S3, available

online. EGCG (epigallocatechin gallate) was from Sigma. The

Dual-Luciferase Reporter Assay System was from Promega.

Mice
Tc1 mice backcrossed to C57BL/6J (2–3 generations) and Ts1Cje

mice backcrossed to C57BL/6J (> 10 generations) were maintained

at the National Institute for Medical Research in accordance with

UK Home Office regulations.8 The TgDyrk1A mice were main-

tained on C57BL6/SJL background in the facility of the Genes

and Disease Program, Center for Genomic Regulation. Whole

brain hemispheres from 6- to 11-month-old adult mice were

used. In all comparisons, sex-matched littermates were used.

ES Cell Culture and Differentiation
Pluripotent D3 and 47-1 ES cells were seeded onto embryonic-fi-

broblast feeder layers and were maintained in DMEM with 15%

fetal-calf serum (Hyclone), 2 mM glutamine, 1 3 nonessential

amino acids (Invitrogen), 50 U/ml penicillin, 50 mg/ml streptomy-

cin, 1:150,000 b-mercaptoethanol, and 103 U/ml LIF-ESGRO

(Chemicon). For the first passage, transchromosomic cells were

cultured in ES medium with 500 mg/ml G418 for ensuring reten-

tion of HSA21. Cells were cultured without G418 for a second

passage, for minimization of differences in culture conditions be-

tween wild-type (WT) and transchromosomic cells, and without

G418 or feeders for the final passage before extraction, for minimi-

zation of background from feeder cells. Transchromosomic cells

were verified by FISH as retaining HSA21 in > 90% of cells, with

the use of human Cot1 probe as described previously.21 For differ-

entiation into NPCs, D3 and 47-1 cells were treated as described.22

In brief, cells were cultured in the absence of LIF to form embryoid

bodies, which were then treated with 5 mM RA for four days before

dissociation22 and replating onto poly-D-lysine- and laminin-

coated dishes in Neurobasal N2 medium (Invitrogen).

Immunofluorescence was carried out as described.14 Images

were captured with the use of a Q550 Imaging Workstation with

DM5000 microscope and Qwin v3.2 software (Leica Microsystems

[UK], Bucks). For cell counts and neurite characterization, 10–15

different images of each of the D3 and 47-1 cell lines from inde-
The American
pendent neural-differentiation experiments were collected by

automated unbiased random sampling (total of 30 images per

cell line). Mature neurons, identified by immunofluorescent stain-

ing, were counted blindly by two researchers and expressed rela-

tive to DAPI-staining nuclei. Similar numbers of D3 and 47-1 cells

were counted (ranging from 400–3000 cells per experiment).

Microarray Analysis
RNA was extracted from four cultures of each cell line in undiffer-

entiated state with the use of RNEasy mini spin columns with

on-column Dnase-1 digestion (QIAGEN, Crawley, UK) and labeled

according to the standard Affymetrix protocol before hybridiza-

tion to MG-U74Av2 microarrays (Affymetrix UK, High Wycombe,

UK). Images were scaled to a target intensity of 500, and all sam-

ples were verified as having Gapdh [MIM 138400] and b-actin

[MIM 102630] 30/50 ratios less than 3 and at least 40% of probe

sets called present (range 40.3–51.1). All array data have been

deposited in the MIAMExpress database, under the experiment

number ‘E-MEXP-654’.

Differentially expressed genes were identified with two different

search strategies. In the first, absolute and comparative data were

exported from Affymetrix MicroArray Suite (MAS) software into

a microarray-analysis program based on Filemaker Pro 5 (File-

maker), developed by G.D. A search was carried out for probe sets

called ‘‘increased’’ or ‘‘decreased’’ by MAS (change p value < 0.05)

in all comparisons between 47-1 and D3 cells, with the highest sig-

nal being called ‘‘present’’ in each case. In the second method, abso-

lute data were imported into Genespring v6.1 (Silicon Genetics, CA,

USA), normalized to the 50th percentile of each array, and normal-

ized to the median for each probe set. The data were then filtered for

removal of all probe sets that were called present in fewer than four

samples and those that changed fewer than two times between the

two cell lines. ANOVA was applied to the remaining probe sets, with

the Benjamini-Hochberg multiple-testing correction.

Quantitative RT-PCR
RNA from mouse brains was extracted with RNABee (Tel-Test,

Texas, USA), according to the manufacturer’s protocol, followed

by DNase-1 digestion (Roche) and cDNA synthesis with Super-

script II reverse transcriptase (Invitrogen). RNA from D3 and

47-1 cells was extracted with the use of the RNeasy Plus Mini Kit

(QIAGEN). Quantitative RT-PCR was carried out via an Applied

Biosystems 7700 Sequence Detector v1.7 and SYBR green or Taq-

man PCR mix, according to the manufacturer’s protocol (Applied

Biosystems, Warrington, UK). All transcripts were measured in

duplicate against standard curves relative to Gapdh.

RNAi Silencing
Knockdown of DYRK1A, Ttc3 [MIM 602259], Dscr3 [MIM 605298],

Setd4, and Cbr1[MIM 114830] was achieved by transfection of

RNAi oligonucleotides with Lipofectamine 2000 (Invitrogen), ac-

cording to the manufacturer’s specific protocol for D3 cells with

minor modifications. In brief, ES cells were trypsinized, pelleted

by centrifugation, and resuspended in ES cell medium. Then, 5 3

105 cells were seeded into previously gelatinized 12-well plates,

and a transfection mixture containing 4 mg of Lipofectamine-2000

and 100 pmol of the specific sequence (or scrambled sequence) of

RNAi reagents in Opti-MEM I Reduced Serum Medium was added

to each sample. Samples were incubated for 24 hr before RNA ex-

traction was performed. RNAi oligonucleotide sequences are avail-

able in Table S4.
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Figure 1. Transcript Profiling and Analysis of Rest Levels in Down Syndrome Model Systems
(A) Unsupervised clustering of transchromosomic (þHSA21) 47-1 and normal control D3 mouse ES cell lines. RNA samples from four
cultures of each cell line were analyzed independently on Affymetrix MG-U74Av2 arrays, and hierarchical clustering based on Spearman
correlation was performed, after elimination of all probe sets called absent across all chips.
(B) qRT-PCR measurement of the level of Rest transcript in undifferentiated ES cells (n ¼ 9 independent cultures).
(C) qRT-PCR analysis of alternative forms of the Rest transcript (Rest-1 and Rest-4) in undifferentiated ES cells (n ¼ 4).
(D) Western blot of Rest protein expression in undifferentiated ES cells. Bars show densitometric intensity of the Rest band, normalized
against each of the three normalizing protein bands (shown below) and averaged across values obtained from three independent cell
cultures for each normalization.
(E) qRT-PCR analysis of Rest in partially trisomic transchromosomic ES lines 40-2 and 46-1, compared with D3 and 47-1 (n ¼ 4).
(F) Map showing regions of HSA21 that are trisomic (black bar indicates HSA21 fragments [mapping data based on refs. 8,21, Table S5, and
unpublished data]; red bar indicates equivalent mouse chromosome 16 segment5) in trisomy 21 models. The box delineates the minimal
trisomic region correlating with Rest suppression.
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Luciferase Assay
Mouse Rest transcript NM_011263 promoter sequence (1013 bp)

was inserted into the PGL-3 basic vector, upstream of the firefly

Luciferase reporter gene. Rest-PGL-3 was cotransected with the

pRL-CMV expression vector into D3 cells with Lipofectamine

2000 (Invitrogen), according to the manufacturer’s specific proto-

col for D3 cells with minor modifications. Luciferase activity was

measured with the Dual-Luciferase Reporter assay system (Prom-

ega). Renilla luciferase activity was used for standardization of

transfection efficiency.

Protein Analysis
For Western blotting, D3 and 47-1 ES cells were solubilized in 30

mM Tris-HCl pH 8.0, 150 mM NaCl, 1 mM phenylmethylsulfonyl

fluoride (PMSF), 1 mM NaF, 1 mg/ml leupeptin, and 5 KU/ml apro-

tinin containing 1% Triton X-100. The lysate was clarified by

centrifugation at 435,000 3 g max for 30 min at 4�C. Immunoblot

analyses were performed as described previously.23 Western

blotting of brain homogenates was performed as described

previously.24

Human-Genome Linkage Analysis
EBV-transformed cell lines of 135 individuals from ten CEPH (Cen-

tre d’Etude du Polymorphisme Humain) pedigrees were obtained

from the Coriell cell repositories. Cell culture and RNA extractions

were performed as described previously.25 Gene-expression levels

of REST and four normalization genes (AGPAT1 [MIM 603099],

B2M [MIM 109700], EEF1A1 [MIM 130590] and UBE2D2 [MIM

602962]) were measured by Taqman qRT-PCR with six replicates

per gene per sample, and expression values were median normal-

ized with q-base software, as described previously.26 Normalized

gene-expression values were used for performing quantitative

multipoint genome-wide linkage analysis with the Merlin package

with the –VC option and default parameters.

Results

Decrease in Rest Level Is an Early and Persistent

Phenotype of Trisomy 21

We sought to examine transcripts altered by trisomy 21 in

pluripotent, undifferentiated mouse ES cells. For this pur-

pose, we compared the transchromosomic mouse ES cell

line 47-1, which was engineered to contain a whole

HSA21 on an otherwise euploid mouse genome,21 with pa-

rental D3 cells using Affymetrix MG-U74Av2 mouse arrays

(n ¼ 4). Unsupervised hierarchical clustering successfully

segregated 47-1 from D3, indicating a global perturbation

of transcription by trisomy 21 (Figure 1A). Rest was found

among the eight most significantly decreased mouse tran-

scripts (Figure S1 and Tables S1 and S2). Given that Rest

had previously been found reduced only in DS fetal brain

cells,9 its apparent reduction in pluripotent ES cells would

provide a new insight; we decided to investigate this fur-

ther. Rest suppression in 47-1 cells was verified by quantita-

tive RT-PCR (Figure 1B). Both alternatively spliced forms of
the transcript (Rest 1 and Rest 4) were significantly de-

creased (Figure 1C; see Table S3 for all primer sequences),

suggesting that suppression occurs at the level of transcrip-

tion rather than alternative splicing. Suppression of Rest

protein was verified by Western blotting of whole cell ly-

sates, in which a single 200 kD band was seen (Figure 1).

Rest protein level was highly significantly reduced, by >

40%, irrespective of the protein used for normalization

(Gapdh, Calnexin, Pten, or all three; Figure 1D). In order

to prove that Rest suppression is not simply a clone- or sys-

tem-specific artifact, we measured Rest transcript levels in

an independently derived transchromosomic ES cell line

carrying a smaller portion of HSA21 (40-2)21 and in adult

brains from two independent mouse models of DS: (1)

transchromosomic Tc1 mice, which model a range of

features of DS, including changes in behavior, synaptic

plasticity, cerebellar neuronal number, congenital heart

defects, and skeletal malformations;8 and (2) Ts1Cje

mice, which are trisomic for a segment of mouse chromo-

some 16 carrying mouse orthologs of 85 HSA21 genes5 and

display DS neurological phenotypes similar to those of Tc1

mice.5–7 All three systems showed a 34%–41% reduction of

Rest transcript levels compared to WT (Figures 1E–1G).

Other tissues of the DS mouse models also showed a de-

crease in Rest and altered dose of some of the genes con-

taining NSRE elements27 that Rest binds to (examples

shown in Figure S2).Therefore, Rest suppression persists

from ES cells to the adult brain, it is reproducible regardless

of differences in genetic background and the species of

origin of the extra chromosome, and, importantly, it is

a phenotype shared between several DS mouse models

(Figure 1F, Figure S2) and human DS.9

Rest-Level Control Maps to DYRK1A Locus in Mouse

ES Cells and Human Lymphoblastoid Lines

Combining results from the different model systems

yielded a minimal trisomic region sufficient to cause Rest

suppression, mapped to a ~2 Mb HSA21 interval. In order

to dissect this region further, we used another ES cell line

(46-1), from the same panel as 40-2, which is not trisomic

for three genes in the candidate region. Because this cell

line showed no significant reduction in Rest levels

(Figure 1E), the minimal candidate region for Rest reduc-

tion could be mapped to only three genes: TTC3, DSCR3,

and DYRK1A (Figure 1F).

As an alternative, independent approach to identifying

loci that regulate REST-gene expression, we undertook a

human genome-wide eQTL analysis.25,28,29 We measured

variation of REST transcript levels in human lymphoblas-

toid cell lines of 135 individuals from ten three-generation

CEPH families. Interindividual differences in REST expres-

sion were observed (variance ratio¼ 4.7), with a significant

proportion of this variability having a genetic component
(G) qRT-PCR analysis of Rest in adult brains of Tc1 mice and their WT littermates (n ¼ 5) and in adult brains of Ts1Cje mice and their WT
littermates (n¼ 6). In all graphs, means and standard errors are shown, and statistical significance by Student’s t test is indicated by one
(p < 0.05), two (p < 0.01), or three (p < 0.001) asterisks.

The American Journal of Human Genetics 83, 388–400, September 12, 2008 391



Figure 2. Rest Levels Are Controlled by the DYRK1A Genomic Locus in Human Cells and Are Sensitive to DYRK1A Levels in Normal
Mouse Cells
(A) Table showing most significant human genome-wide eQTLs for REST expression levels. The four columns show the chromosome where
the peak is located, the genetic map position of the SNP marker with the highest LOD score, its physical position according to the hg17
assembly, and the corresponding LOD score, respectively.
(B) Results of multipoint REST eQTL analysis of HSA21. Dotted lines show the interval of most significant linkage genome-wide and the
corresponding annotated gene content derived from the UCSC genome browser. The highlighted box indicates overlap with the common
trisomic region identified by segmental models in Figure 1F.
(C) Individual and combination gene-by-gene dissection of the candidate overlap region with the use of RNAi silencing in normal mouse
E14 ES cells. The RNAi targets are indicated along the horizontal axis, and the vertical bars show the qRT-PCR levels for Rest (n ¼ 3
independent transfection experiments). The specificity and efficiency of silencing is shown in Figure S3. Data are shown normalized
to control samples transfected with a nontargeting ‘‘scrambled’’ RNAi sequence. Means and standard errors are shown, and statistical
significance by Student’s t test is indicated by one (p < 0.05) or two (p < 0.01) asterisks.
(heritability¼ 0.64; p¼ 3E-6). We performed genome-wide

quantitative linkage analysis using a set of 2688 autosomal

SNPs30 distributed throughout the human genome. Inter-

estingly, the highest LOD score (LOD ¼ 3.81; p ¼ 1.4E-5;

Figure 2A) mapped to a 3 Mb genomic region on HSA21

that overlaps with the minimal region responsible for

Rest suppression in mouse models of DS (Figure 2B;

highlighted square).
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Figure 3. Trisomy of DYRK1A Reduces
Rest mRNA Levels in Mouse Models of DS
(A) qRT-PCR analysis of Rest and human
DYRK1A levels in undifferentiated mouse
ES cells: D3 (open bars), 47-1 (filled
bars), and 47-1 transfected with RNAi spe-
cifically targeting human DYRK1A mRNA in
the 30UTR (striped bars) (n ¼ 3 indepen-
dent transfection experiments). The data
are shown relative to control samples
transfected with nontargeting ‘‘scrambled’’
RNAi sequence.
(B) qRT-PCR analysis of Rest levels in undif-
ferentiated mouse D3 and 47-1 ES cells
(blue symbols and red symbols, respec-
tively) treated with the DYRK1A-kinase
inhibitor, green-tea compound EGCG (10
mM), for 0, 6, or 24 hr.
(C) Undifferentiated D3 mouse ES cells
were transfected with a construct contain-
ing 1013 bp of mouse Rest promoter se-
quence cloned upstream of a firefly lucifer-
ase reporter gene and were then treated
(þ) or not treated (�) with 10 mM EGCG
for 24 hr (ev: cells transfected with empty
vector, containing the luciferase gene
without any promoter). Horizontal bars
represent arbitrary luminescence units.
Firefly luminescence was normalized
against Renilla luciferase activity for
taking into account transfection efficiency
(n ¼ 3 independent transfection experi-
ments).

(D) qRT-PCR analysis of Rest in adult brains of TgDyrk1A mice and WT littermates (n ¼ 5). Means and standard errors are shown, and
statistical significance by Student’s t test is indicated by one (p < 0.05) or two (p < 0.01) asterisks.
DYRK1A Dosage Imbalance Perturbs Rest Levels

These data, taken together, allowed us to hypothesize that

one or more of the three genes in the minimal candidate re-

gion (TTC3, DSCR3, or DYRK1A) would control Rest tran-

script levels in mice and humans. In order to test this

hypothesis, we used RNAi oligonucleotides to specifically

silence the three genes, individually or in pairs, in normal,

pluripotent, undifferentiated mouse E14 ES cells (for

sequences of all siRNA reagents, see Table S4; silencing

effectiveness was measured by quantitative RT-PCR; see

Figure S3). Rest mRNA levels specifically responded only

to the dose of Dyrk1A and not to the other two genes

(Figure 2C). Interestingly, the level of Rest was reduced

when the Dyrk1a transcript was suppressed (Figure 2C).

We then used human-specific DYRK1A RNAi oligonucleo-

tides (targeting the 30UTR) to silence only the products of

the third copy of the DYRK1A gene in transchromosomic

47-1 ES cells. This approach only partially succeeded in sup-

pressing human DYRK1A mRNA (~0.5-fold; Figure 3A),

with no significant effect on mouse Dyrk1A (not shown).

This correction was sufficient for rescuing Rest levels to

within the range of normal (D3 control) values (Figure 3A).

This provides strong evidence that Rest dysregulation is me-

diated by DYRK1A. The effect of the selective DYRK1A-
The American
kinase inhibitor, epigallocatechin gallate (EGCG),31 on Rest

expression was then assessed. Short-term culture with the

inhibitor slightly reduced Rest levels in D3 cells but had

little effect on trisomic 47-1 cells (Figure 3B). Longer treat-

ment significantly reduced Rest levels in both cell lines as

compared with untreated cells (Figure 3B), in concordance

with the effect of complete RNAi silencing of DYRK1A

(Figure 2C, Figure S3). We also observed an inhibitory effect

of EGCG on the Rest-promoter activity in undifferentiated

ES cells (Figure 3C). Lastly, we studied Rest in brains from

adult Dyrk1A transgenic (TgDyrk1A) mice, which display

several DS-related neural phenotypes and show a 1.94-

fold increase in Dyrk1A protein levels.24 A significant

(~30%) reduction of Rest mRNA was observed (Figure 3D),

demonstrating that the increased Dyrk1A gene dosage is

sufficient to cause the suppression of Rest, to an extent

similar to that observed in brains of DS mouse models.

These data suggest that Rest expression is very sensitive

to the level of Dyrk1A, with both over- and underexpres-

sion of Dyrk1A resulting in Rest suppression. The

DYRK1A-inhibitor data implicate DYRK1A phosphoryla-

tion in the mechanism behind this effect. Our data cannot

exclude the possibility that other HSA21 genes cooperate

with DYRK1A in modulating the Rest levels. The potential
Journal of Human Genetics 83, 388–400, September 12, 2008 393



Figure 4. Trisomy 21-Caused Perturbation of the Regulatory Network Maintaining Pluripotency in Undifferentiated ES Cells Is
Sensitive to DYRK1A Activity
(A) qRT-PCR measurements of the mRNA levels of key regulators of pluripotency in undifferentiated D3 (open bars) and 47-1 (filled bars)
mouse ES cells (n ¼ 9).
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contribution of several other genes from the eQTL region

was considered: DOPEY2, which was implicated in cerebel-

lar morphogenesis,32 is not expressed at the blastocyst

stage (Unigene database), whereas Cbr1, recently high-

lighted as a strong potential candidate for the generation

of DS phenotypes,33 and Setd4 were both ruled out by

the demonstration that their respective RNAi knockdowns

had no effect on Rest levels in mouse ES cells (see

Figure S4). Much more detailed analysis would have to be

carried out for the examination of additional contributory

effects of all other HSA21 genes.

DYRK1A-Rest Deregulation Disturbs Pluripotency

and Embryonic Stem Cell Fate

Our data show that the level of Rest is approximately halved

in undifferentiated trisomy 21 ES cells (Figure 1). It was re-

cently reported that Rest þ/� cells show reduced levels of

key regulators of pluripotency, Oct4, Nanog, and Sox2, re-

sulting in aberrantly premature expression of differentia-

tion-driving transcription factors (TFs).20 The differences

in the levels of Oct4, Nanog, and Sox2 in our microarray

data were not above the rigorous significance cutoff thresh-

olds. However, when their expression was more sensitively

tested by qRT-PCR on a larger number of independent

cultures (n ¼ 9), a result partially overlapping with that of

Rest þ/� cells20 was obtained: Oct4 levels were not signifi-

cantly changed, but Nanog and Sox2 were both significantly

reduced in trisomy 21 ES cells (Figure 4A). Next, we mea-

sured the levels of several TF drivers of embryonic-layer-

specific differentiation (downstream targets of Oct4, Nanog,

and Sox2) that were increased in Restþ/� cells.20 We found

that the TF drivers of endoderm (Gata4 [MIM 600576],

Gata6 [MIM 601656], and Foxa2 [MIM 600288]) and meso-

derm (Snai1 [MIM 604238] and Pitx2 [MIM 601542]) were

all aberrantly increased in undifferentiated trisomy 21 ES

cells, whereas TF drivers of ectoderm (Fgf5 [MIM 165190])

were unchanged (Figure 4B, Tables S1 and S2). We then

demonstrated that the reduced levels of Nanog and Sox2 in

47-1 cells could be partially restored (though still not reach-

ing the levels in D3 cells; not shown) by human-specific

DYRK1A RNAi transfection (Figure 4C), similar to Rest

(Figure 3A). The partial knockdown of human DYRK1A in

this experiment did not significantly alter the levels of line-

age-specific TFs (not shown), probably because it would

take a stronger and more lasting knockdown to stimulate
the cascade of events in the reassembly of the complexes

repressing the transcription of these TFs once they had

been derepressed. We then investigated whether the drastic

reduction in Rest caused by a 24 hr incubation with

DYRK1A-kinase inhibitor in normal mouse D3 cells had

any effects on the pluripotency-regulating network. This

treatment reduced the level of Rest in D3 cells by 3.5-fold

(Figure 3B), and it was also sufficient to trigger a reduction

in the levels of Nanog and Sox2 and a premature increase in

the expression of endodermal and mesodermal TFs Foxa2,

Gata4, and Snai1 (Figure 4D). Taken together, these data

show that the pluripotency-regulating network is disturbed

in trisomy 21 ES cells in a specific way, which is similar in

part to the disturbance reported for the heterozygous knock-

out of Rest,20 and that this deregulation is partially sensitive

to the dose and enzymatic activity of DYRK1A.

When we allowed the ES cells to differentiate into embry-

oid bodies (EBs), the trisomy 21 EBs (47-1) showed a signif-

icantly higher level of the primitive endoderm marker

(Gata4) and severely reduced levels of neuroectodermal

markers (Nestin [MIM 600915], Tubb3 [MIM 602661],

Map2 [MIM 157130]), compared with the normal EBs (D3)

(Figure 5A), suggesting a skewed ratio of early layer-specific

progenitor cells in favor of primitive endoderm at the ex-

pense of neuroectodermal progenitors. This was further in-

vestigated by replating the dissociated EB onto N2 medium,

allowing the differentiation of neuroectodermal progeni-

tors into neurons. Trisomy 21 cells (47-1) produced a signif-

icantly reduced number of neurons per total number of

DAPI-staining nuclei and lower relative levels of Tubb3

and Map2 mRNA in the same cell population (Figures 5B

and 5B0). There was also a trend toward an increase in abnor-

mal branching in 47-1-derived neurons, compared with D3

neurons (Figure 5C), quantified as an altered ratio of

secondary to primary neurites (see Figure S5). These data

reproduce the main features of the neurogenesis defect

previously reported for human DS fetal neurospheres.9

Discussion

Dual-specificity tyrosine-phosphorylated and -regulated

kinase, DYRK1A, is a well-characterized HSA21 gene and

ortholog of the Drosophila minibrain (mnb) gene, whose

mutation causes abnormal spacing of neuroblasts and

reduced production of neuronal progeny in Drosophila.34
(B) qRT-PCR measurements of the mRNA levels of selected differentiation-driving TFs that are known downstream targets of the regulators
of pluripotency. TFs driving specific embryonic-layer lineages are color coded, as per labeled color symbols. D3 (open bars) and 47-1 (filled
bars) (n ¼ 9).
(C) qRT-PCR analysis of Sox2 and Nanog levels in undifferentiated mouse ES cells: 47-1 (filled bars) and 47-1 transfected with RNAi
specifically targeting human DYRK1A mRNA in the 30UTR (open bars) (n ¼ 3 independent transfection experiments). The data are shown
relative to the control samples transfected with nontargeting ‘‘scrambled’’ RNAi sequence.
(D) qRT-PCR analysis of the levels of regulators of pluripotency and selected lineage-specific TFs in undifferentiated normal mouse D3 cells
treated with the DYRK1A-kinase inhibitor, green-tea compound EGCG (10 mM), for 0 hr (open symbols) or 24 hr (reverse striped symbols).
TFs driving specific embryonic-layer lineages are color coded, as per labeled color symbols.
In all graphs, means and standard errors are shown, and statistical significance by Student’s t test is indicated by one (p< 0.05), two (p<
0.01), or three (p < 0.001) asterisks.
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Figure 5. Trisomy 21 ES Cells Give Rise to Embryoid Bodies with a Disturbed Composition of Lineage-Specific Progenitors
(A) qRT-PCR measurements of the mRNA levels of selected lineage-specific markers in EBs derived by culturing D3 (open bars) and 47-1
(filled bars) ES cells (n ¼ 8 experiments) in the absence of LIF, as well as in the presence of retinoic acid. Markers of specific embryonic-
layer lineages are color coded, as in Figure 4.
(B and B0) Measurement of the progress of in vitro neurogenesis of EBs from Figure 5A replated onto Neurobasal N2 medium for promoting
the differentation of neural progenitors into neurons. (B) mRNA levels of Nestin, Map2, and Tubb3, measured by qRT-PCR (n ¼ 7 exper-
iments). (B0) Proportion of cells positive for immunofluorescent staining with a neuronal marker, relative to the number of DAPI-staining
nuclei (n ¼ 2 experiments). Lower graph shows values normalized to WT D3 levels.
(C) Representative immunofluorescence images of Tubb3-positive (green) cells derived from EBs of D3 and 47-1 cells after differentiation
for 48 hr in Neurobasal N2 medium, with DAPI (blue) nuclear counterstain. See Figure S5 for quantitative analysis of neurite branching. In
all graphs, means and standard errors are shown, and statistical significance by Student’s t test is indicated by one (p < 0.05), two (p <
0.01), or three asterisks (p < 0.001).
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Dosage imbalance of DYRK1A together with DSCR1 (MIM

602917) (also on HSA21) has been reported to cause a dys-

regulation of the NFATc (MIM 602699) pathway in DS.35

This mechanism is most likely independent of the Rest dys-

regulation we report here, given that DSCR1 is not trisomic

in two systems showing Rest reduction in our experiments

(40-2 and TC1) and that the Rest reduction we observe de-

velopmentally precedes the changes in NFATc. We report

a downregulation of Rest mRNA in adult brains of three dif-

ferent DS mouse models—Tc1, Ts1Cje, and TgDyrk1A—

compared to their WT littermates (Figures 1G and 3D). In-

terestingly, all three of these mouse models and a fourth

mouse model that is trisomic for four HSA21 genes, includ-

ing DYRK1A (Tg152f7), share learning and memory defi-

cits, motor defects, including hyperactivity and other be-

havioral changes, and LTP deficits in the hippocampus or

other signs of hippocampal dysfunction.4–8,24 This com-

parison between the yeast artificial chromosome (YAC)-

transgenic, gene-transgenic, and segmental-trisomy

models should be taken with a degree of caution, because

even though there is a hippocampal dysfunction in both

models, the reasons behind each could be different. Also,

the impact of Dyrk1A overexpression could be different

in different genetic backgrounds within disomic or triso-

mic contexts and in different brain regions. Our data are

partly in contradiction with a recently generated 33-gene

trisomy model of DS, Ts1Rhr, that shows no hippocam-

pal-volume change and no electrophysiological and be-

havioral defects associated with hippocampal functions

despite having three copies of Dyrk1A.36 However, given

that (1) crossing the Ms1RhR reciprocal-deletion model

to the Ts65DN mouse model rescues most of the latter

model’s cognitive phenotypes36 and that (2) TgDyrk1A

mouse models show compelling phenotypes,4,24 it is likely

that additional factors, such as strain-specific modifier

genes, might account for the apparent contradiction. Addi-

tional studies on the Ts1RhR mouse model are clearly

necessary to explain these discrepancies. Interestingly,

monosomy of this 33-gene segment (mouse model

Ms1RhR) produced striking reductions in hippocampal

volume,36 comparable to the severe reduction in brain

size and morphology in Dyrk1Aþ/�mice37 and consistent

with the fact that truncation of DYRK1A in humans causes

microcephaly.38 This result is compatible with our observa-

tion that downregulation of Dyrk1A below physiological

(disomic) levels drastically reduces Rest level (Figure 2C,

Figure 3B), thereby deregulating early differentiation and

decreasing the relative proportion of neuroectodermal pro-

genitors. In support of this explanation, an early develop-

mental function for Rest has also been demonstrated in

other models: Rest-knockout mice exhibit early embryonic

lethality,39 and RNAi strategies in Xenopus revealed that a

reduced transcriptional dose of Rest causes incorrect pat-

terning of the ectoderm and abnormal neurogenesis.40

The observation that both overdose and inhibition of

Dyrk1A have the same consequence of reducing the Rest

transcript level is intriguing. Several different hypotheses
The American
could explain this phenomenon. It is plausible that an

imbalance could occur in a multiprotein complex regulat-

ing REST transcription, subcomponents of which could be

DYRK1A targets. Such mechanisms have been previously

demonstrated in yeast, in which under- or overexpression

of single subunits of a multiprotein complex reduced the

fitness of the complex as a whole with an equal outcome.41

We also identify the DYRK1A locus on 21q22 as the most

significant eQTL for the control of Rest level in human lym-

phoblastoid lines (LBLs) (Figures 2A and 2B). Interestingly,

this locus, as well as the next two most likely eQTLs (9q22

and 6q27; Figure 2A), form three of the 12 loci genome-

wide, with the suggestive linkage to Alzheimer’s disease (AD,

[MIM 104300]), in a study of 437 families.42 It might be inter-

esting to examine the roles of DYRK1A and REST in aging and

survival of neurons, as well as in pathogenesis of AD.

DYRK1A displays a dynamic spatio-temporal pattern of

expression during mouse brain development.43 Its expres-

sion in preneurogenic and neurogenic progenitors43 places

it at the critical point when a sudden change in the level of

Rest transcription takes place,14 after the proteolytic degra-

dation of Rest triggers the exit from ES to preneurogenic

progenitor. The transient burst of DYRK1A expression in

the asymmetric neuronal-progenitor cell division fits with

its potential role as the trigger for neuro-differentiation com-

mitment.43,44 Our data suggest that one of the mechanisms

by which DYRK1A could exert this triggering role could be

through precipitating local spatio-temporal changes in the

level of Rest. Repertoire of downstream target genes regu-

lated by REST is critically dependent on the level of

REST,14,27,45 regulation and maintenance of which is not

fully understood. Differentiation is triggered by an orches-

trated reduction in Rest levels, which is mediated both by

ubiquitin-dependent proteolytic degradation andby control

of transcription.14,46 Forced partial knockout of Rest destabi-

lizes a complex network of miRNAs and proteins responsible

for the maintenance of self-renewal and pluripotency of

both human and mouse ES cells.20,47,48 This produced a pre-

mature and aberrant expression of differentiation-driving

TFs of all embryonic lineages in undifferentiated ES cells.20

Our data (Tables S1 and S2, Figures 4A and 4B) show that

the halving of Rest dose by trisomy 21 reproduces many of

these perturbations (decreased levels of Nanog and Sox2

and increased levels of Gata4, Gata6, Foxa2, Snai1, and

Pitx2), but not all of them (Oct4 and Fgf5 levels are un-

changed). The reasons for these differences are unclear and

require additional investigation, but they are likely to result

from the trisomic contribution of other HSA21 elements.

Nevertheless, the reduction in Rest has the potential to sig-

nificantly perturb the pluripotency network in trisomy 21

ES cells, and this perturbance seems to be partially sensitive

to the dose and kinase activity of DYRK1A (Figures 4C and

4D). DYRK1A is localized in the cell nuclei and/orcytoplasm,

depending on the specific cell type, and some of its phos-

phorylation targets include histone subunits and TFs.49–51

The potential contribution of other HSA21 genes to this

deregulation remains to be investigated. We cannot rule
Journal of Human Genetics 83, 388–400, September 12, 2008 397



out the possibility that DYRK1A-kinase activity affects other

regions in the Rest promoter, besides affecting transcription

from the promoter region, shown in Figure 3C (though we

ruled out any significant contribution from several other re-

gions, totaling 1393 bp of the Rest promoter; data available

on request). We also cannot rule out the possibility that

DYRK1A-kinase activity affects other unknown targets

within the complex miRNA-protein-regulatory network,

whose back- and forward-feeding loops control levels of

Rest, Oct4, Nanog, and Sox2.20,47,48

ES cells with premature expression of differentiation-

driving TFs have been reported to give rise to EBs with in-

creased lineage-specific progenitors.20 To test if this

phenomenon could be reproduced in trisomy 21 ES cells,

we differentiated the 47-1 and D3 cells for 8 days in the

absence of LIF, as well as in the presence of retinoic acid.

Consistent with the premature expression of TFs observed

in the trisomy 21 ES cells, their differentiation into EBs

resulted in a skewed ratio of lineage progenitor markers:

compared with normal (D3) cells, the trisomic (47-1) cells

produced EBs with higher levels of Gata4 (a marker of

extra-embryonic endoderm and heart development) and

reduced markers of the EB neuroectodermal compartment

(nestin, Tubb3, and Map-2) (Figure 5A). Neurogenesis start-

ing from such EBs was retarded (Figure 5B), consistent with

the prediction that the EBs contained fewer neuronal

progenitor cells relative to other progenitors. Two other

reports support these observations: (1) we have recently

shown that trisomy 21 ES cells ectopically form teratomas

displaying the full spectrum of differentiated tissues

in vivo but with a strongly reduced neuronal cell fate com-

pared with euploid controls,52 and (2) Bahn et al. have

shown that human fetal-brain neurospheres display a se-

verely reduced ability to form neurons, compared to neu-

rospheres grown from age-matched euploid feti.9 The DS

neurospheres also produced neurons with abnormally

branched neurites,9 a result reproduced by our transchro-

mosomic ES cells (Figure 5C and Figure S5) and by partial

REST siRNA knockdown in a differentiating NPC cell

line.53 Taken together, these data suggest that the

DYRK1A-REST perturbation has the potential to signifi-

cantly contribute to the development of defects in neuro-

nal number and morphology in DS. The premature reduc-

tion in REST levels could skew cell-fate decisions to give

rise to a relative depletion in the number of neuronal pro-

genitors, and the same reduction in REST levels could

cause an aberrantly accelerated differentiation of each pro-

genitor, producing abnormally highly branched neurons.

In summary, we have demonstrated that Rest levels are

disturbed at a very early developmental stage in trisomy

21 ES cells (preceding ES cell differentiation) and shown

this disturbance to be dose-sensitive to the level and activ-

ity of DYRK1A. Our results suggest that this deregulation

has the potential to disturb the development of all embry-

onic lineages, warranting more detailed research into its

contribution to all aspects of DS pathology and rationales

for novel therapeutic approaches.
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